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1. INTRODUCTION

Let J denote a non-empty open subinterval of the real line IR and let
f = (Xn)nEd' be a strictly monotone bi-infinite sequence of numbers Xn E J.
For each number mE IN x let Gm(J; f) denote the vector space over the field
C of all complex cardinal spline functions of degree m on J with knot
sequence f, i.e., the vector space of all complex-valued functions s E ~m-I(J)

such that the restriction of s to each compact subinterval [xn,xn+ I ] (n E Z)
of J is a polynomial function of degree ~m with complex coefficients.

It is well known that the simplest spline functions belonging to the vector
space Gm(J; f) are the truncated power functions

(n E Z), (1)

where, as usual, for any mapping f: J ~ IR, its positive part on J, max(O, f),
is denoted by f+. One reason for the importance of the spline functions
(Sm.n)nE£ is the fact that the basis splines S E Gm(J; f) in the sense of Curry
and Schoenberg [1] may be represented as (finite) linear combinations with
real coefficients of the truncated power functions (sm,n)nez' Indeed, for any
given nEZ, we have

(2)

and the conditions

SuppeS) ~ [Xn , Xn + m+ I]

("small support" condition), andrn
+

m
+

1

set) dt = 1
X n
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(normalization) that characterize the basis spline s E 6 m(J; f) imply that its
coefficients (C k)o';k.;m+l are uniquely determined by the system of linear
equations

for 0 ~ I ~ m

= (_I)m + I . (m + 1) for 1= m + 1.
(3)

For further results concerning B-splines (which are numerically more
satisfactory than the truncated power basis), the reader is referred to the
recent book by de Boor [2].

The notion of truncated power function (1) is closely related to the
Heaviside unit step function

Y: x N'-+ 1

N'-+O

if x~O

if x < 0,

that plays an important role in Schwartz distribution theory. It is well known
under the name "discontinuous factor" or "unit impulse" in some other
branches of applied mathematical sciences. In particular, in integral
transform analysis, mathematical physics, electrical engineering, and signal
processing various different kinds of integral representations are used for
these "factors." To be more specific, recall that the one-sided Laplace
transform of the monomial function IR 3 x N'-+ x m (m E IN X) is given by
z N'-+ m!/zm+ 1 in the complex open right half-plane. Thus the Laplace
inversion theorem implies that the truncated power functions (1) admit the
integral representations

m! [+ioo e(X-xn)z dz
sm,n: J3x N'-+-2 m+l'

1t c-ioo Z I
(4)

for all numbers n E 71. Needless to say, the choice of a specific integral
representation should be appropriate to the problem dealt with. Appropriate
integral transforms reveal themselves to be pliable and versatile tools.

The main idea of the present paper is to establish a suita~le integral
representation of the truncated power functions (1) by means of the inverse
Mellin transform (Section 3). Although this integral transform is closely
related to the Fourier transform and to the (two-sided) Laplace transform, it
has its own peculiar uses. Its application to problems arising in various parts
of analytic number theory and in the theory of difference equations (N6rlund
[5]) is particularly effective. However, to the a~thor's best knowledge the
first application of the Mellin transform to problems arising in the theory of
spline functions was discussed in his papers [9, 10] .-In the present paper
we will show that our approach, which is based on the Mellin inversion
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theorem as formulated in Section 2 and which differs totally from the
original method developed by Newman and Schoenberg [4] for cardinal
logarithmic spline functions (Section 4), makes it possible to establish the
whole theory of these splines in a very lucid and economical manner. In
particular, the asymptotic behaviour of the cardinal logarithmic spline
functions when their degrees tend to infinity can be easily analyzed by this
technique (Section 6). Thus the contour integral representation for the
cardinal logarithmic splines (Theorem 4), which is the central result of the
present paper, particularly complements the author's previous treatments
[9, 10] of this topic.

2. INVERSION OF THE MELLIN TRANSFORM

Let I denote a non-empty subinterval of IR and let g be a function
holomorphic in the open strip E[ = {z E iC IRe z E /} such that

lim g(z) = 0
I Imz I ~+oo

holds uniformly whenever Re z varies in any compact subset of the basis I of
E[. Then the following inversion theorem for the Mellin transform holds:

THEOREM 1. Suppose that the function g satisfies the aforementioned
conditions. In addition, suppose that for each point X o E I the function

IR :3 Y ""+ g(xo+ iy) E iC

belongs to the complex Lebesgue space L 1(IR). Then, for each x E IR ~ the
integral

I c+ioo dz
11 g(X)=-f g(z)x- Z

---;-

2n c-ioo I
(c E I), (5)

along a line in E[ parallel to the imaginary axis, is independent of the
particular choice of the constant c in the basis I of E[. For each z E E[, the
Mellin transform of 11g, i.e., the line integral

f
dx

1C1g)(z) = 11g(x)K-,
IR-l' x

(6)

exists and equals g(z).

The proof follows via a displacement of the path of integration in (5)
parallel to itself by an application of Cauchy's integral theorem. In fact, to
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within a change of variable, (6) is the Fourier inversion formula. For details
the reader is referred to the classical treatise of Titchmarsh [12]. In this
connection also see Oberhettinger [6].

3. TRUNCATED POWER FUNCTIONS

Let (rm)meN x denote the sequence of partial products in the classical
Gauss representation of the gamma function r, i.e., let rm denote the
meromorphic function

(7)

Then, for each z E C in the open right half-plane Re z > 0, successive
performing of integration by parts on t""> (I - t/m)m tZ

-
1 yields the identity

(Re z > 0) (8)

for each number m E IN x. Since the left hand side of (8) is the Mellin
transform of the function 1R:3 t""> (1 - t/m)~ at the point z E C with
Re z > 0, the injectivity of the Mellin transform Jf implies via its inversion
formula (Theorem I) the following integral representation of the truncated
power functions, a representation which is of interest in its own right.

THEOREM 2. Let the numbers m E IN x and t E IR be fixed. Then we have

(
t )m I .c+ioo dz

1-- = -J rm(z) t- z
--:-

m + 2n c-ioo I
(c > 0), (9)

where r m is defined by (7) and the line integral is independent of the
particular choice of c > O.

Ftom (2) and (4) resp. (9) we may deduce two kinds of integral represen
tations of the basis splines s E em(J; f). The coefficients (ck)O<;;k<;;m + 1

involved are well determined by (3). The first kind of integral representation
will be exploited in an investigation of the cardinal spline interpolation at the
sequence f = 7L of equidistant knots on the whole real line by means of
cardinal exponential splines in the sense of I. J. Schoenberg (cf. Section 7
infra). Another kind of integral representation of the basis splines using
suitable closed rectifiable paths and rational integrands, has been pointed out
by Meinardus [3]. However, the main concerns of the present paper are
cardinal logarithmic splines in the sense of Newman and Schoenberg [4].
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4. CARDINAL LOGARITHMIC SPLINE FUNCTIONS

283

Let J = IR ~ be the open positive real half-line and define the knot sequence
to = (Xn)nEI according to

(n E Z),

where the real number ho > 1 denotes a fixed step width. Consider the
slightly modified logarithmic function

. x logx
fo' IR + 3 x 'V4 -1-h- E IR.

og 0

For each number m E IN x a real-valued function SmE em(1R ~ ; to) is called a
cardinal logarithmic spline function of degree m with step width ho provided
the following two conditions are satisfied:

(i) S m satisfies the inhomogeneous linear geometric difference
equation of the first order

whenever x E J = IR ~ .

(ii) S m interpolates the function fo in the knot sequence to' i.e., the
interpolation property

holds for all n E Z.

Given numbers mE IN x and ho> 1, there exists a unique cardinal
logarithmic spline S m of degree m with step width ho' It can be constructed
in the following way: Starting with the step function

IR~ 3x'V4s~m)(x)=(-I)m-lm!L x_nmY(Xn-X),
nEE

calculate by successive integration (cf. Section 3) the functions

IR ~ 3 x 'V4 s~m-k)(x)= - foo s~m-k+ I) (t) dt
x

Then, finally, the mth integration step

IR ~ 3 x 'V4 Sm(x) =rS'",(t) dt

(1 <, k <, m - 1).
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furnishes for the desired cardinal logarithmic spline functions S m the
following explicit representation, which is valid uniformly for all points
xEIR~:

Sm(x) = L ((l-xn ): - (l-xxn ):)
nEE

(10)

If formula (9) of Theorem 2 supra is inserted into (10) we can establish by
an elementary computation the following:

THEOREM 3. Let (Sm)m>l be the sequence oj cardinal logarithmic spline
functions of degree m with step width ho > 1. Then the representation

holds uniformly for all points x E IR ~ and for each number m E IN x. The
integral along a line parallel to the imaginary axis in the complex open right
half-plane Re z >0 is independent of the particular choice oj the real
constant c> O.

The representaion formula (11) of Sm sharpens an asymptotic result of
[9]. It will be the key to our contour integral representation formula
(Theorem 4 infra) in the next section and to our discussion in Section 6 of
the-asymptotic behaviour of the sequence (Sm)m>l as the degree m tends to
infinity.

5. AN INTEGRAL REPRESENTATION OF

CARDINAL LOGARITHMIC SPLINES

Arguing as in note [9], let the infinite series (11) be divided into two parts.
such that the first one includes the summation over all numbers n E IN,
whereas the second one is concerned with the summation over all integers
n ~ - 1. In view of the uniform convergence with respect to the variable z of
the first sum, we may change directly the order of integration and
summation. However, such an interchange is not permissible in the second
sum. If we observe that in the second sum the origin Zo = 0 of C forms a
removable singularity of the integrands, we may overcome the difficulty by
translating the path of integration parallel to the imaginary axis to the open
left half-plane. Taking into account that on the new contour the second sum
converges uniformly with respect to· z, the interchange of integration and
summation is allowed. By putting the two parts together, the result may be
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described as follows. Let c >0 and dE ]-1, 0 [ be any fixed real numbers
and let the straight lines parallel to the imaginary axis of C

be endowed with a positive orientation in such a way that their juxtaposition

in the one-point compactification of C admits the topological index (winding
number)

with respect to the orlgm Zo = O. Furthermore, introduce for each point
x E IR ~ the sequence (Fm.x)m> 1 of complex-valued functions

1 _x- z
F . Z N4 r (z) h-zfo(m) ----,----,-

m,x' m 0 1-h-z
o

(12)

Then we obtain, by Theorem 3 and the reasoning above, the central result of
this paper.

THEOREM 4. The cardinal logarithmic spline functions (Sm)m>l admit
the contour integral representation

1
Sm(x)=-2.f FmAz)dz

m L '
(13)

which holds uniformly for all points x E IR ~. The kernel Fm,x is defined by
(12) and L denotes the boundary of the vertical strip .Ejd,C[ as indicated
above.

6. ASYMPTOTIC ANALYSIS

The line integral (13) along the circuit L can easily be evaluated by an
application of the calculus of residues. In fact, one verifies that for all
numbers m E IN x the functions F m,x have simple poles located at the
equidistant points

640/31/3-1

2nik
z --

k - log ho
(k Ell)
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on the imaginary axis of C and that we have, for all x E IR ~ ,

Res(Fm.x' zo) = fo(x),

Res(F Z ) = _1_ r (z )(1 _ x- Zk ) e-hi/ifo(ml
m,x' k logh

o
m k

(k E Z).

At all the order poles Z f/;. {Zk 1k E Z} of the functions F m,x in the complex
plane C we have IndL(z) = O. Thus we obtain from (13) by an application of
Cauchy's residue theorem

=fo(X)+_I- L: r m(zk)(I-x- Zk )e- 2"i/ifo(m),
log ho keZX

uniformly for all points x E IR ~ and all numbers mE IN x. We conclude from
(14) by a standard denseness argument (cf. [11) that limm_ oo Sm(x) = fo(x)
holds if and only if the point x E IR ~ satisfies the condition

Sm(x) = L Res(Fm,x' Zk) IndL(zk)
keY

L: r(zk)(1 - x- Zk
) ehikl = 0

ke7L X

(14)

(15)

for all points t E [0,1[. If the identity (15) is combined with the injectivity
of the Fourier transform, our main result of this section becomes obvious.

THEOREM 5. The condition limm_ oo Sm(x) = fo(x) is satisfied at the
points x E IR ~ if and only if x belongs to the knot sequence to' i.e., if and
only if x coincides with one of the interpolation knots of the sequence
(Sm)m;>I'

In other words, Theorem 5 states that the sequence (Sm)m;;. I of cardinal
logarithmic spline functions converges pointwise on IR ~ towards fo as
m ~ co only at those points x E IR ~ where the convergence holds trivially by
the interpolation property (ii). This striking fact is called the
Newman-Schoenberg phenomenon. Formula (14) shows that the bi-infinite
sequence (zkhe7LX of simple poles * 0 located on the imaginary axis of C is
responsible for the occurrence of the pointwise divergence phenomenon.

7. CONCLUDING REMARKS

The integral representation of the cardinal logarithmic splines, established
in Theorem 4 via the inverse Mellin transform (Theorem 1), simplifies the
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asymptotic analysis that is given in Section 6 supra by the same method as
in [9]. In contrast to this complex integral transform method, Refs. [7,8] are
based on a real integral transform and a suitable second-order refinement of
Karamata's Abel-Tauber theorem. For a survey of the transform methods
the reader is referred to Ref. [11], which will be published in near future.
Furthermore, an application of the inverse Laplace transform to the cardinal
exponential splines mentioned above will be outlined in a forthcoming paper.
In this case too, the integral representation technique gives more insight into
what actually happens when the degree of the cardinal exponental splines
tends to infinity. In particular it shows that the pointwise asymptotic
behaviours of the cardinal exponential spline interpolants and the cardinal
logarithmic splines are totally different.
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